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ABSTRACT
In this paper, we prove topology dependent bounds on the

number of rounds needed to compute Functional Aggregate

Queries (FAQs) studied by Abo Khamis et al. [PODS 2016]

in a synchronous distributed network under the model con-

sidered by Chattopadhyay et al. [FOCS 2014, SODA 2017].

Unlike the recent work on computing database queries in the

Massively Parallel Computation model, in the model of Chat-

topadhyay et al., nodes can communicate only via private

point-to-point channels and we are interested in bounds that

work over an arbitrary communication topology. This model,

which is closer to the well-studied CONGEST model in dis-

tributed computing and generalizes Yao’s two party commu-

nication complexity model, has so far only been studied for

problems that are common in the two-party communication

complexity literature.

This is the first work to consider more practically mo-

tivated problems in this distributed model. For the sake

of exposition, we focus on two specific problems in this

paper: Boolean Conjunctive Query (BCQ) and computing

variable/factor marginals in Probabilistic Graphical Models

(PGMs). We obtain tight bounds on the number of rounds

needed to compute such queries as long as the underlying hy-

pergraph of the query is O(1)-degenerate and has O(1)-arity.
In particular, the O(1)-degeneracy condition covers most

well-studied queries that are efficiently computable in the

centralized computation model like queries with constant

treewidth. These tight bounds depend on a new notion of

‘width’ (namely internal-node-width) for Generalized Hyper-

tree Decompositions (GHDs) of acyclic hypergraphs, which

minimizes the number of internal nodes in a sub-class of

GHDs. To the best of our knowledge, this width has not
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been studied explicitly in the theoretical database literature.

Finally, we consider the problem of computing the product

of a vector with a chain of matrices and prove tight bounds

on its round complexity (over a finite field of two elements)

using a novel min-entropy based argument.
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1 INTRODUCTION
In this paper, we prove topology dependent bounds on the

number of rounds needed to compute Functional Aggre-

gate Queries (FAQs) of [32] in a synchronous distributed

network under the model considered by Chattopadhyay et

al. [18, 19]. For ease of exposition, we consider the FAQ-SS
problem [7, 32, 41] i.e., FAQ with a single semiring (also

called Marginalize a Product Function in [3]), which is a spe-

cial case of the general FAQ problem (defined in Section 5).

In FAQ-SS, we are given a multi-hypergraph H = (V, E)

where for each hyperedge e ∈ E we are given an input func-

tion fe :

∏︁
v ∈e Dom(v) → D. In addition we are given a set

of free variables1 F ⊆ V and our goal is to compute the

function:

ϕF(x) =
∑︂

y∈
∏︁
v∈V

Dom(v):yF=x

∏︂
e ∈E

fe (ye ) (1.0)

for every x ∈
∏︁

v ∈F Dom(v), where ye and yF are y pro-

jected down to co-ordinates in e ⊆ V for every e ∈ E and

F ⊆ V respectively. Further, all the operations are over the

commutative semiring2 (D,+, ·) with additive identity 0. As
1
We would like to mention here that our results hold only for specific

choices of free variables.

2
A triple (D, ⊕, ⊗) is a commutative semiring if ⊕ and ⊗ are commutative

binary operators overD satisfying the following: (1) (D, ⊕) is a commutative

monoid with an additive identity, denoted by 0. (2) (D, ⊗) is a commutative
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with database systems, we assume that the functions are

given in listing representation i.e., the function fe is repre-
sented as a list of its non-zero values: Re = {(y, fe (y))|y ∈∏︁

v ∈e Dom(v) : fe (y) ≠ 0}.3 WedefineD = maxv ∈V
|Dom(v)|,

N = maxe ∈E |Re |, k = |E | and r as the maximum arity

among all functions.

Though our results are semiring agnostic, we mention

two special problems that we consider in this paper. The

first problem is when F = ∅ and the semiring is the Boolean
semiring (D = {0, 1},∨,∧). This corresponds to the Boolean
Conjunctive Query (which we will call BCQ).

4
The other prob-

lem is when F = e for some e ∈ E and the semiring is

(R≥0,+, ·), which corresponds to computing a factor mar-
ginal in Probabilistic Graphical Models (or PGMs) – here we

think of fe as a probability distribution. The FAQ setup (and

even FAQ-SS) encompasses a large class of problems in var-

ied domains. We refer the reader to the surveys [3, 33] for

an overview of these applications.

Given a query q =
(︂
H , { fe }e ∈E , F

)︂
, we will consider

the number of rounds needed to compute q in a distributed

environment. In particular, the underlying communication
topology5G = (V , E) is assumed to be a synchronous network

and we would like to compute q on G with the following

constraints [18, 19]. Initially, all functions { fe }e ∈E are as-

signed to specific nodes K ⊆ V : 1 ≤ |K | ≤ k (called players).
In each round of communication, O(r · log

2
(D)) bits6 can be

simultaneously communicated on each edge in E (each such

edge or channel is private to the nodes at its endpoints). At

the end of the protocol, a pre-determined player in K knows

the answer to q. Naturally, we would like to design protocols

that minimize the total number of rounds of communication

(rounds hereon) needed to compute q on G. More generally,

we would like to obtain tight bounds depending onH and

G for this problem for every query topology H and every
network topologyG. Note that we do not take into account

the internal computation done by nodes inG and we assume

that all nodes in V co-operatively compute the answer to q.
Due to space constraints, many of the technical details are

monoid with a multiplicative identity, denoted by 1. (In the usual semiring

definition, we do not need the multiplicative monoid to be commutative.) (3)

⊗ distributes over ⊕. (4) For any element d ∈ D, we have d ⊗0 = 0 ⊗d = 0.
3
We use function/relation interchangeably for fe /Re but both mean the

same.

4F = V over the Boolean semiring is the natural join problem.

5
Note that this is distinct from H and is just a simple graph: see Figure 1

for an example illustrating this difference.

6
This is a natural choice since any tuple in any function can be communi-

cated with at most O (r · log
2
(D)) bits. Our bounds seamlessly generalize

to the cases when each edge – (1) can transmit B ≠ r · log
2
(D) bits and

(2) has a different capacity, but for ease of exposition, we will not consider

these generalizations in this paper.
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Figure 1: Two example queries H1 and H2 and two
topologies – “line" G1 and “clique" G2. H2 has hyper-
edges R(A,B,C), S(B,D), T (C, F ) andU (A,B, E).

deferred to the version of this paper [38], which we refer to

as full paper.

1.1 Why this distributed model?
We believe that the strength of our model is its generality.

Specifically, it captures query computation in three different

paradigms, namely: (1) Computing the natural join query in

the Massively Parallel Computation (MPC) model [2, 9, 10,

31, 36, 37], (2) Computing join and aggregation queries for

sensor networks [13, 23, 40] and (3) Computation of FAQs

on arbitrary topologies using software defined networks and
optical reconfigurable networks like ProjecToR [24]. Before

we discuss these in detail, we would like to mention that

the CONGESTmodel in distributed computing has the same

setup as ours [42] with one crucial difference. Unlike our

case, where we can compute FAQs on any topology in the

CONGESTmodel, the topologies for computing a fixed FAQ
typically depend on the query itself.

The sequence of works in the MPC setting focus on comput-

ing the natural join q (which is a special case of FAQ-SS as
mentioned earlier) on a topologyG with p nodes, which is

typically well-connected. Each round of communication has

two phases – (1) internal computation among the nodes and

(2) communication between the nodes bounded by a node

capacity L. The goal in MPC is to minimize the number of

rounds h needed for computing q. There are two different

lines of work in this regime – one where p is fixed and the

goal is to determine h, L [9, 10, 36, 37] and the other is when

h, L are fixed and the goal is to determine p [2]. We compare

both these classes of models with ours in Appendix A and

present an executive summary here.



Roughly speaking, the MPC model defined in [9] is a special

case of our model. We consider two different MPC models

– one with no replication (which we call MPC(0) [9]) and

one with replication (which we dub MPC(ϵ) [2, 36]). Both
these models have some differences from ours and among

themselves. For instance, both these models assume a spe-

cific network topology G ′
(as opposed to any topology G in

our case), work on node capacities L (as opposed to edge

capacities in our setting) and prove bounds for the natural

join problem (in contrast, our bounds apply for the more gen-

eral FAQ). The input functions are systematically assigned

to players in MPC(0) and are uniformly distributed among

players in MPC(ϵ). The instantation of these models for the

setting where p is fixed and h, L is to be determined is the

closest to our model. In particular, when H is a star, our

protocols obtain the same guarantees as MPC(0) and are

slightly worse in MPC(ϵ). Our model does not (yet) handle

the scenario when L is fixed and the goal is to determine p.
Sensor networks are typically tree-like topologies, where

the goal is to efficiently and accurately report aggregate

queries on data generated by the sensors. Since the sen-

sors can store only little data, these queries are typically

restrictive. We show in the full paper [38] that our results

imply bounds for some of these queries. Recently, Internet of

Things (IoT) devices [1] show the promise of expanding the

data storage/class of queries that can be computed on sensor

networks. We believe that our model/results will find more

relevance in the IoT setting since the sensors used posess

more computation power than those considered in [40]. Fi-

nally, our work initiates the study of computation on general

topologies to be used in emerging technologies like Projec-

ToR [24], which has been proposed for use in data centers

where topologies can be changed based on the workload.

1.2 Summary of Our Contributions
Table 1 lists our results and Section 2 contains a detailed

overview of techniques used to obtain the results. We sum-

marize our contributions here. For the sake of brevity, we

focus on the BCQ problem. Our main result is the following.

For (hyper)graphsH with constant degeneracy
7
(d) and con-

stant arity (r ), we prove tight bounds (up to constant factors)
for computing any BCQ on any network topology G. Con-
stant treewidth implies constant d and, as a result, queries

having constant d encompass most well-studied queries that

are efficiently computable in the centralized computation

model.

Upper Bounds. Our upper bounds need protocols for solv-

ing the following two basic algorithmic tasks: (1) set inter-

section and (2) sending all inputs to a single node. For (1),

7
Degeneracy is defined as the smallest d such that every sub(hyper)graph

in H has a vertex of degree at most d .

our protocol is new in the FAQ literature and for (2), we use

a standard protocol from flow networks. Interestingly, our

results highlight a notion of width of acyclic queries– the

number of internal nodes for a subclass of GHDs
8
(defined

in Section 2.2.2), which to the best of our knowledge, has not

been explicitly studied in the database literature.

Lower Bounds. Our lower bounds follow fromknown lower

bounds on the well-studied TRIBES function in two-party

communication complexity literature (defined in Section 2.2.2).

At a high level, we start with an arbitrary TRIBES instance

and show that it can be reduced to a suitable BCQ instance in

our model. We then prove lower bounds on the BCQ instance

using known lower bounds on TRIBES.

We note here that the simplicity of our techniques allows

us to extend our results to the general FAQ problem. Fur-

ther, we would like to mention that extending our bounds

to d-degenerate graphs with non-constant d has a known

bottleneck of solving BCQ ofH onG whenH is a clique and

G is an edge. In particular, the gaps dependent on d in Table 1

cannot be resolved without addressing this bottleneck.

Finally, we consider the following FAQ-SS problem of

Chain Matrix-Vector Multiplication (MCM): computing Ak ·

Ak−1 · . . . ·A1 ·x, where each player gets x,A1, . . . ,Ak in order

and they would like to compute the product over the finite

field F2.
9
Note that this problem is different from the well-

known Online Matrix Vector Multiplication problem
10
and is

related to k layer neural networks.
11
We prove a tight bound

for this problem. The upper bound is simple but the lower

bound argument (though conceptually simple) is technically

the most involved part of the paper. We use an entropy-

based argument using min-entropy instead of the standard

Shannon’s entropy. This requires more care since we can no

longer use the chain rule.

2 OUR MODEL AND DETAILED
OVERVIEW OF OUR RESULTS

In this section, our goal is to provide a walkthrough of our

results and techniques used to prove them. We start with

a formal definition of our model. Then, we illustrate with

examples our results for the case when H has arity at most

two and subsequently, our new notion of width for GHDs.

We conclude this section with our results on Chain Matrix-

Vector Multiplication (MCM).

8
An internal node is a non-leaf node in a GHD.

9F2 has two elements: the additive identity 0 and multiplicative identity 1.
Addition and Multiplication are all modulo 2.

10
We illustrate this difference in the full paper [38].

11
In neural networks, a non-linear function is applied after each matrix-

vector multiplication and the multiplication is over reals instead of F2. Our

lower bounds hold for this setting as well.



Query G d, r Gap Ref

FAQ L O(1),O(1) ˜︁O(1) Thm 5.1

FAQ A O(1),O(1) ˜︁O(1) Thm 5.1

BCQ A d, 2 ˜︁O(d) Thm 4.1

FAQ A d, r ˜︁O(d2r2) Thm 5.2

MCM* L 1, 2 O(1) Sec 6

Table 1: The first and second columns denote the query that
we compute and topology on which the query is computed.
In the second column, L denotes a line and A denotes an ar-
bitrary G. The third column denotes the degeneracy (Defi-
nition 3.3) and arity conditions (d, r ). The fourth column de-
notes the gap between our upper and lower bounds ignoring
polylogarithmic factors in N andG (denoted by ˜︁O). The final
column denotes the relevant result in this paper. Note that
all our results except MCM (denoted by a ‘*’) assume worst-
case assignment of input functions in the query to nodes in
G.

2.1 Our Model
We first define our model.

Model 2.1. We are given a query q, its underlying hypergraph
H = (V, E) with input functions fe (having at most N non-
zero values) for every e ∈ E and a topologyG = (V , E). Further,
each function is completely assigned to a unique node in V .
It follows that there exists a subset K : K ⊆ V that contains
the players with functions and |K | ≤ k = |E |. We assume
N ≥ |V (G)|2 and consider worst-case inputs for the functions.
We would like to compute BCQ (and more generally an FAQ)
of H on G. To design a protocol for this computation, we as-
sume that every node in G has the knowledge of H and G. In
each round of the protocol, at most O(r · log

2
(D)) bits can be

communicated over every edge in E. In particular, this implies
any subset of edges in G can communicate in the same round.
Further, at the end of the protocol, a pre-determined player in
K has the answer to q.
Finally, given the above setup, our goal is to design protocols
that minimize the total number of rounds needed to compute
q assuming worst-case assignment of the functions to players
in G. Note that we do not take into account the internal com-
putation done by nodes inG and we assume that all nodes are
always available in V (i.e., node failures do not happen) and
they co-operatively compute the answer to q.

We prove both upper and lower bounds on the total number

of rounds needed to compute q on G for every query hyper-

graph H and every topology G. While our upper bounds

hold for any assignment of input functions to players in G,
our lower bounds hold for a specific class of worst-case as-

signments of input functions to players in G. In Section 8,

we further discuss the assumptions onH andG in the above

model.

Before we move to our results for the case whenH has arity

at most two, we would like to point out that our bounds

do not assume that the size of q is negligible compared to

N , which is a standard assumption for computing database

queries. Thus, our results are more general and in particular,

for applications in PGMs, this is necessary since the size of

q cannot be assumed as negligible w.r.t. N .
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Figure 2: Two directed pathsW1 andW2 forG2 and two
GHDs T1 (with 1 internal node) and T2 (with 2 internal
nodes) both rooted at (A,B,C) for H2. G2 and H2 are in
Figure 1.

2.2 Arity Two H

We consider the case when H has arity at most two and

illustrate our upper and lower bound techniques through

examples.

2.2.1 Upper Bounds. We start with a trivial protocol to com-

pute any query H on any G . We then show how to improve

upon it whenH has a special structure. We use two extremal

instances of G for an easy exposition of our results – a line

(least connectivity) and a clique (full connectivity). We refer

the reader to Figure 1 for all examples (exceptH0) considered

in this section.

Trivial Protocol. There is always a trivial protocol to solve any
query H on any G in which all players send their functions

to one designated player who then computes the answer.

We consider the topologiesG1 andG2 from Figure 1. We first

start by computing a toy query H0 on G1.

Example 2.1. Consider the query hypergraph H0 = (V =

{A}, E = {R(A), S(A),T (A),U (A)}) i.e., all edges are self-

loops onA and the lineG1. We would like to solve BCQ ofH0

onG1, which inDatalog format isq0() : −R(A), S(A),T (A),U (A).



In G1, player P1 gets R, P2 gets S , P3 gets T and P4 gets U .

Then, solving BCQ ofH0 on G1 is equivalent to checking if

the set-intersection R(A) ∩ S(A) ∩T (A) ∩U (A) is empty. Let

us assume that player P4 needs to know the answer for this

query.

We can solve this query in N + 2 rounds as follows. In the

first round, player P1 sends a value a ∈ Dom(A) such that

there exists R(a) = 1 to player P2 who then checks if S(a) = 1.

More generally, in the i-th round, player Pj for 2 ≤ j ≤ 4

receives an a from its left neighbor (j − 1) and checks if a
is present in its table. If so, it passes a to its right neighbor

(j+1) (if j ≤ 3) in the next (i+1)-th round. Otherwise, it does

not pass anything. Notice that this protocol will terminate

once all matching values of a are passed from P1 to P4 which

takes N + 2 rounds in the worst case. In other words, we are

computing the semijoin (see Definition 3.5) query ((R(A)⋉
S(A)) ⋉ T (A)) ⋉ U (A), which is equivalent to computing

R(A)∩S(A)∩T (A)∩U (A). Note that this is much better than

the trivial protocol for this case, which takes 3 ·N + 2 rounds.

At the end of this protocol, P4 knows the answer to the query.

It is not too hard to see that we can extend the above protocol

to the case when any other player say Pi for some i ∈ [3] is

designated to know the answer. In particular, we can orient

G1 in such a way that all paths are directed towards Pi and
then run the protocol above simultaneously on all paths

(there are at most two) towards Pi (recall that we assume

knowledge of G for all nodes). Note that Pi would have the

answer to the query and the new protocol takesN +x rounds,

where x ≤ 2 depends on the choice of Pi .

It is not too hard to see that our protocol in the above example

can be extended to the case whenH is a star. We illustrate

this in the following example.

Example 2.2. Consider the star H1 and the line G1 in Fig-

ure 1. We would like to solve BCQ of H1 on G1, which in

Datalog format is q1() : −R(A,B), S(A,C),T (A,D),U (A, E). In
G1, player P1 gets R, P2 gets S , P3 getsT and P4 getsU . Then,

BCQ of H1 is 1 iff πA(R) ∩ πA(S) ∩ πA(T ) ∩ πA(U ) is non-

empty and 0 otherwise. Here, πA(·) denotes the projection
onto attribute A. We assume P2 needs to know the answer

for this query.

We can solve this query in N + 2 rounds using the same

protocol as in Example 2.1. In other words, we are computing

the semjoin query
12 ((πA(R)⋉πA(S))⋉πA(T ))⋉πA(U ). Note

that each node needs to compute πA(·) internally but this

doesn’t need any communication between the nodes. At the

end of this protocol, P2 knows the answer to the query.

We now show how to do the same computation (i.e., BCQ of

H1) on G2.

12
We would like to mention that casting the computation of BCQ on a star

query as a semijoin is well-known [34].

Example 2.3. Consider the starH1 and the clique G2 in Fig-

ure 1. We would like to compute BCQ ofH1 onG2, which in

Datalog format is same as q1 from Example 2.2. InG2, player

P1 gets R, P2 gets S , P3 gets T and P4 getsU . We assume that

Dom(A) is split into two halves and P2 needs to know the

answer for this query.

We can solve this query in
N
2
+ 2 rounds as follows. We

consider the two edge-disjoint directed paths W1 and W2

(see Figure 2) on G2 that end with P2. Our protocol from

Example 2.2 runs on both these paths simultaneously with

one caveat – the values of a in the first half of Dom(A) are
sent throughW1 and the ones in the second half of Dom(A)
are sent throughW2. Since both these directed paths involve

the same set of nodes, our protocol is valid and takes only

N
2
+ 2 rounds as claimed above. Note that this is better than

our bound in Example 2.2.

The protocols in Examples 2.2 and 2.3 can be generalized to

solve any starH on anyG . Given the protocol for a star, there
is a natural extension toH being a tree (or more generally

a forest): we handle all the stars of the tree in a bottom-up

fashion (starting with the stars at the "end" of the tree) and

recurse. In particular, we can apply our protocol for the star

case as a black-box on each of these stars. To extend this

result to general d-degenerate graphsH , we first decompose

H into a forest and a core that contains the roots of all trees
in the forest and all remaining vertices not in the forest.

We run the above protocol on the forest and use the trivial
protocol on the core. For generalG , note that we need to find
optimal ways of applying these protocols – for the forest

part, we extend the idea of packing edge-disjoint paths from

Example 2.3 to a Steiner tree (Definition 3.8) packing and

for the trivial protocol, we use standard ideas from network

flows (Definition 3.12). We would like to mention here that

our upper bounds hold even when more than one function is

assigned to a player (i.e., |K | < k). We will crucially exploit

this fact in our lower bounds. We present more details in

Section 4.1.

We are now ready to talk about our lower bounds.

2.2.2 Lower Bounds. All our lower bounds follow fromknown

lower bounds on the well-studied TRIBES function (see [18]

and references therein) in two-party communication com-

plexity literature. To this end, we first consider an arbitrary

TRIBES instance of a specific size and show that it can be

reduced to a suitable two-party BCQ instance. In particular,

solving the two-party BCQ instance we constructed indeed

solves the TRIBES instance we started with. Thus, known

lower bounds on TRIBES imply lower bounds for BCQ. Fi-

nally, we generalize our results from the two-party setting

to general G using ideas from [18, 19] and exploit the fact

that our (upper and) lower bounds are for worst-case input



functions and worst-case assignments of input functions to

players in G.
We start by defining the two-party communication complex-

ity model as a special case of Model 2.1.

Model 2.2. Consider two players Alice (a) and Bob (b) on
a graph G = (V = {a,b}, E = {(a,b)}) with strings X̄ =
(X1, . . . ,Xm) and Ȳ = (Y1, . . . ,Ym), where Xi ,Yi ∈ {0, 1}N .
Further, Alice gets X̄ , Bob gets Ȳ and both have knowledge of
only their inputs. The goal for these two players is to compute
the boolean function f (X̄ , Ȳ ) : {0, 1}m ·N ×{0, 1}m ·N → {0, 1}.
The randomized two-party communication complexity of com-
puting f , denoted by
R(f (X̄ , Ȳ ),G, {a,b}), is defined as the minimum worst-case
number of rounds13 needed by a randomized protocol that
deterministically computes f (X̄ , Ȳ ) with error at most 1

3
.

We would like to mention that considering the randomized

two-party communication complexity over its deterministic

counterpart makes our lower bounds only stronger. We de-

fine TRIBES and state the lower bound result that we will

use in our arguments.

Theorem 2.3 (Jayram et. al [30]). Let TRIBESm,N (X̄ , Ȳ ) ≡⋀︁m
i=1

DISJN (Xi ,Yi ), where DISJN (Xi ,Yi ) is 1 if Xi ∩ Yi ≠ ∅

and 0 otherwise, Xi ,Yi ∈ {0, 1}N for every i ∈ [m] and X̄ =
(X1, . . . ,Xm), Ȳ = (Y1, . . . ,Ym). Note that in the two-party
model, Alice gets X̄ and Bob gets Ȳ . Given this setup, we have

R
(︁
TRIBESm,N (X̄ , Ȳ ),G, {a,b}

)︁
≥ Ω(m · N ).

We start with an arbitraryTRIBES instanceTRIBESm,N (X̄ , Ȳ )
of a suitable size and show that it can be reduced to a suitable

two-party BCQ instance BCQH,X̄ ,Ȳ , wherem is a function

ofH . In particular, such a reduction would imply

R
(︁
BCQH,X̄ ,Ȳ ,G, {a,b}

)︁
≥ R

(︁
TRIBESm,N (X̄ , Ȳ ),G, {a,b}

)︁
≥ Ω(m · N ),

where the final inequality follows from Theorem 2.3. The

above inequality implies the following since we consider

worst-case input functions for a fixed H .

R
(︁
BCQH,N ,G, {a,b}

)︁
≥ R

(︁
BCQH,X̄ ,Ȳ ,G, {a,b}

)︁
, (1)

where BCQH,N denote the class of problems where all func-

tions in H have size at most N . We generalize the above

result to any G using ideas from [18, 19]. We consider an

appropriate cut C = (A,B) of G that partitions V into two

vertex-disjoint subsets A and B and a correponding assign-

ment, where each function e ∈ E(H) is assigned to a node

in either A or B. Since this is a valid assignment of func-

tions inH to players in G, the minimum number of rounds
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In each round, we assume at most one bit is sent from a to b instead

of O (log
2
(r · D)) bits to be consistent with the two-party communication

complexity literature.

needed to compute an instance of BCQH,N on G assuming

worst-assignments of functions to players in K , denoted by

R
(︁
BCQH,G,K

)︁
, is at least

R(BCQH,X̄ ,Ȳ ,G, {a,b })
MinCut(G ,K ) ⌈log(MinCut(G ,K ))⌉

. We

reconsider H1 and G1 from Example 2.2 here.

Example 2.4. Recall we proved an upper bound of N + 2

for computing BCQ of H1 on G1. We start with an arbitrary

TRIBESm=1,N (X̄ = (X1), Ȳ = (Y1)) instance. With a slight

abuse of notation, we treat X1,Y1 as subsets of [N ] (instead

of elements in {0, 1}N ). We now construct a corresponding

BCQH1,X̄ ,Ȳ instance from the TRIBES one as follows – we

assign R(A,B) = X1 ×{1}, S(A,C) = T (A,D) = [N ]× {1} and

U (A, E) = Y1 × {1}. It is not too hard to see that BCQH1,X̄ ,Ȳ
is 1 iff TRIBES1,N (X̄ , Ȳ ) is 1, implying that solving the BCQ

instance would solve the TRIBES instance. Finally, to obtain

a lower bound for computing BCQH1,X̄ ,Ȳ on the line G1,

we only need a cut where R and U are on different sides.

We consider the cut C = ({P1, P2}, {P3, P4}) of G1 and the

assignment where P1 gets R, P2 gets S , P3 gets T and P4 gets

U . Then, we can us (1) and Theorem 2.3 to obtain the required

lower bound of Ω(N ) since MinCut(G,K) = 1. Note that the

above lower bound holds for any star H . The same TRIBES

instance can be used for Examples 2.1 and 2.3 as well. While

a similar assignment holds for Example 2.1, Example 2.3

requires a different assignment whereC = {P1}, {P2, P3, P4})

and P1 gets R and S , P2 gets T and P3 getsU . Note that more

than one input function can be assigned to the same player

in G.

For general d-degenerate graphs H , we start by recalling

thatm (i.e., size of the TRIBES instance) is a function ofH .

As mentioned in Section 2.2.1, we can decompose H into

a forest and a core. We prove three different lower bounds

on H , where the size of the TRIBES instancem used in our

reduction is the maximum of three different bounds, each

one on a different part of H . The first one is on H ’s for-

est part, the second and third ones are on H ’s core part –
lower bounded by applying Moore’s bound [5] and Turan’s

theorem [6] respectively. For each case, we show that we

can reduce the TRIBES instance to a suitable two-party BCQ

instance. Thus, known lower bounds on the TRIBES instance

from Theorem 2.3 apply for the BCQ instance. Finally, to gen-

eralize our results from two-party BCQ to generalG , we use
ideas from [18, 19] to obtain an appropriate cut forG and use

lower bounds from the induced two-party communication

complexity problem across the cut. Note that the assignment

of functions depends on the cut. We present the details in

Section 4.2.

For constant d , our upper and lower bounds match. However,

for non-constant d , we have a gap of ˜︁O(d). We would like to

note that there is a fundamental bottleneck in getting rid of

this factor as the case of H being a clique is an outstanding



open question
14
(even in Model 2.2) and seems beyond the

reach of current communication complexity techniques [16].

2.3 Notion of Width
We start by defining the notion of GHDs and acyclic (hy-

per)graphs.

Definition 2.4 (GHD). A GHD of H = (V, E) is defined
by a triple ⟨T , χ , λ⟩, where T = (V (T ), E(T )) is a tree, χ :

V (T ) → 2
V is a function associating a set of vertices χ (v) ⊆

V to each node v of T , and λ : V (T ) → 2
E is a function

associating a set of hyperedges to each node v of T such that
the following two properties hold. First, for each e ∈ E, there is
at least one node v ∈ V (T ) such that e ⊆ χ (v) and e ∈ λ(v).
Second, for every V ′ ⊆ V , the set {v ∈ V (T )|V ′ ⊆ χ (v)} is
connected in T , called the running intersection property (RIP
hereon). We only consider rooted GHDs.
A reduced-GHD has the additional property that every hyper-
edge e ∈ E has a unique node v ∈ V (T ) such that χ (v) = e
(note that this is an equality).

Definition 2.5 (Acyclicity). A hypergraphH = (V, E) is
acyclic iff there exists a GHD (T , χ, λ) in which for every node
v ∈ V (T ), χ (v) is a hyperedge in E.

We now define the sub-classes of reduced-GHDs that we

consider in this paper. In particular, we construct reduced-

GHDs using the GYO algorithm [28, 46, 51] (GYOA, also

called GYO-Elimination order) and call them GYO-GHDs.

We start by defining the GYO-reduction H ′
of a hypergraph

H .

Definition 2.6 (GYO-reduction and GYOA). For any hy-
pergraphH , the GYO-reductionH ′ is defined as the leftover
hypergraph after running GYOA onH . We describe GYOA here.
The input to GYOA is H and its output is a hypergraph H ′.
It performs the following two steps iteratively on H ′ (starting
withH ′ = H ): (a) Eliminate a vertex that is present in only
one hyperedge and (b) Delete a hyperedge that is contained in
another hyperedge. GYOA terminates when it cannot perform
any of the above two steps on H ′.

We note here that running GYOA on an acyclic hypergraph

H returns an empty H ′
. For general hypergraphs H , we

start by running GYOA onH , which returns a hypergraph

H ′
. Note that the hyperedges removed in this process form a

forest of acyclic hypergraphs. For each hypertree in the forest

of acyclic hypergraphs, we can construct a reduced-GHD and

root it arbitrarily. We now define C(H) and F(H) based on

the GYO-reductionH ′
and the reduced-GHDs constructed

for the original hyperedges of H removed during GYOA.

Definition 2.7 (C(H), F(H)). C(H) is the union of H ′ and
the root in each reduced-GHD we constructed. F(H) = H \H ′.
14
We state this problem formally in the full paper [38].

We are now ready to construct GYO-GHDs.

Construction 2.8. Let T be the GYO-GHD be obtained from
the following procedure. We define the root r ′ ofT with χ (r ′) =

V (C(H)). For each edge e ∈ E with e ⊂ V (C(H)), we create a
new node v ′

e in T with χ (v ′
e ) = e and add the edge (r ′,v ′

e ) to
T in order to make it a reduced-GHD. For every reduced-GHD
T ′ in F(H), we add the edge (r ′, r ′′) to T , where r ′′ is the
root of T ′. We add all the remaining nodes and edges in each
reduced-GHD in F(H) to T .

We argue that the above procedure produces a reduced-GHD

in the full paper [38]. Our new notion of width based on GYO-

GHDs, which we call y (Internal Node Width), is defined as

follows.

Definition 2.9.

y(H) = min

∀T:T is a GYO-GHD of H
y(T )

where y(T ) is the number of internal/non-leaf nodes in T .

Unless specified otherwise, in the rest of the paperwhen
we refer to GHDs, we are referring to GYO-GHDs. As
an example in Figure 2, we consider two different GHDs T1

and T2 for the acyclic hypergraph H2 from Figure 1. Both

are outcomes of Construction 2.8 and while T2 has two

internal nodes, T1 has only one, implying y(H) = 1. For

H1 in Figure 1, it is easy to construct a GHD with one in-

ternal node (i.e., y(H) = 1) by keeping (A,B) as the root

and (A,C), (A,D), (A, E) as leaves. We show how this can be

achieved for simple graphs H in Section 4.

2.4 Chain Matrix-Vector Multiplication
Finally, in this work, we consider the problem of computing

Ak · · ·A1x where the computation is over F2. The player Pi
gets Ai for i ∈ [k] and P0 gets x. Player Pk+1 wants to know

the answer (and does not have any input). The topology

G is a line with Pi connected to Pi+1 for 0 ≤ i ≤ k . We

show that when k ≤ N the natural algorithm that computes

the partial product Ai · · ·A1x at Pi taking Θ(kN ) rounds

is indeed optimal. By contrast, if the matrices are assigned

randomly to the players then the optimal number of rounds

is Θ(k2N ) (this follows from a trivial protocol). On the other

extreme, if all matrices are assigned to one player, then the

problem is trivial. So we are proving a tight lower-bound for

arguably the simplest assignment of matrices to players that

is not trivial.

We note that the existing technique of [18] cannot prove a

lower bound better than Ω(N ) for this problem (see the full

paper [38] for a more detailed description). To get a better

lower bound of Ω(kN ), we use an entropy based inductive

argument to show that at end of the Ω(iN ) rounds, in player

Pi ’s view,Ai−1 · · ·A1x has very high entropy. However, Shan-
non’s entropy is too weak for this argument to go through



and we use the stronger notion of min-entropy, which is

omnipresent in pseudorandomness and cryptography [49].

Unfortunately, this means that we can no longer appeal to

the chain rule and the arguments become a bit more deli-

cate. Finally, in the process we prove the following natural

result: if A and x have high enough min-entropy, then Ax
has higher min-entropy than x. To the best of our knowledge
this result is new, though it follows by combining known

results in pseudorandomness.
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3 PRELIMINARIES AND NOTATION
In this section, we define some notions related to the query

hypergraph H and network topology G. We conclude the

section with some asymptotic notation.

Query (Hyper)graph H .

Definition 3.1 (n2(H)). Using Definition 2.7, we can decom-
pose any H into a core C(H) and a forest F(H). We define
n2(H) = |V (C(H))|.

Definition 3.2 (Degree). The degree of a vertex v ∈ H is
given by

|︁|︁|︁{e ∋ v : e ∈ E}

|︁|︁|︁.
Definition 3.3 (d-degenerate (hyper)graph [35]). In a d-
degenerate (hyper)graph, every sub(hyper)graph has a vertex
of degree at most d .

We now define natural join and semijoin.

Definition 3.4 (Natural Join). The natural join J = ▷◁
e ∈E

Re is a relation J with attribute set V (H) satisfying the fol-
lowing condition (where ▷◁ denotes the join operator). A tuple
t ∈ J iff for every e ∈ E(H), the projection of t onto at-
tributes in v(e) - denoted by πv(e)(t) - belongs to Re . Note that
J ⊆

∏︁
v ∈V (H) Dom(v).

Definition 3.5 (Semijoin). A semijoin J ′ = R1 ⋉ R2 of re-
lations R1 and R2 is defined as J ′ = R1 ▷◁ πattr(R1)∩attr(R2)(R2),
where attr(·) denotes the attribute set of the relations and ⋉ is
the semijoin operator.

We show in the full paper [38] that natural join and semijoin
are special cases of FAQ .

Network Topology G. We define some standard graph no-

tions that will be used throughout the paper.

Definition 3.6 (MinCut(G,K)). We denote the size of the
minimum cut of G separating vertices in K by MinCut(G,K).

Definition 3.7 (Star Graph). A star is a tree on n vertices
with one internal node and n − 1 leaves (e.g. H1 in Figure 1).
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this result.

Definition 3.8 (Steiner tree). Given a graphG = (V , E)
and a set of nodes K ⊆ V , we call a tree T a Steiner tree if it
connects all vertices in K only using edges in E.

In particular, we are interested in Steiner trees with diam-

eter at most ∆ (i.e., distance between any two nodes in K).
Let T∆,K denote the set of all such Steiner trees.

Definition 3.9 (ST(G,K,∆)). ST(G,K,∆) denotes themax-
imum number of edge disjoint Steiner trees from T∆,K that can
be packed in G.

We will need this result:

Theorem 3.10 ([39]).

ST(G,K, |V (G)|) = Ω(MinCut(G,K)).

Finally, we state a recent result under Model 2.1 on set-

intersection queries over any topology G and any subset of

players K ⊆ V : |K | ≤ k , which we will use frequently in

our arguments.

Theorem 3.11 ([18]). Let xu ∈ {0, 1}N for every playeru ∈ K .
The number of rounds taken by a protocol that deterministically
computes

⋀︁
u ∈K xu (where the ∧ is bit-wise AND) is given by

Θ
(︂
min∆∈[ |V |]

(︂
N

ST(G ,K ,∆) + ∆
)︂)︂
.

We will use the following notation for a special case of a

multi-commodity flow problem:

Definition 3.12. For every graph G, subset of players K and
integer N ′ ≥ 0, let τMCF(G,K,N

′) be the minimum number
of rounds needed to route at most N ′

log
2
(N ′) bits from all

players in K to any one player in K , assuming log
2
(N ′) bits

are sent in each round. 16

Let the minimum number of rounds taken by a protocol

to determinstically compute BCQ of H on G be denoted

by D(BCQH,N ,G,K), where each function in H has size at

most N and is assigned to some player in K ⊆ V , |K | ≤ k .
Recall that R(BCQH,N ,G,K) is themost minimum worst-

case number of rounds needed to deterministically compute

any instance in BCQH,N with error at most
1

3
. The trivial

protocol, along with Definition 3.12, implies the following.

Lemma 3.13.

D(BCQH,N ,G,K) = O (τMCF(G,K,k · r · N )) .

3.1 Asymptotic Notation
For notational clarity, we will ignore a factor of log

2
(N ) ·

log
2
(MinCut(G,K)) · log

2
(n2(H)) in our lower bounds. Fur-

ther, we ignore these factors while arguing for the tightness

of our bounds, which we denote by ˜︁Ω(·), ˜︁O(·) and ˜︁Θ(·).
16
Here, we will consider the worst-case over all possible ways the

N ′
log

2
(N ′) bits are distributed over K . While our upper bounds can be

smaller than this, we use this worst-case measure to simplify our bounds.



4 H IS A SIMPLE GRAPH
In this section, we consider the class of queries BCQH,N for

a given d-degenerate graph H with arity r at most two and

all functions have size at most N . We prove upper and lower

bounds that are tight within a factor of ˜︁O(d) for computing

any query in BCQH,N . The following is our main result.

Theorem 4.1. For arbitrary topology G, subset of players
K and d-degenerate simple graph H , we have

D(BCQH,N ,G,K) =

O

(︃
y(H) · min

∆∈[ |V |]

(︃
N

ST(G,K,∆)
+ ∆

)︃)︃
+O (τMCF(G,K,n2(H) · d · N )) . (1.1)

Further, for all simple graphs H , we have

R(BCQH,N ,G,K) ≥˜︁Ω (︃
y(H) · N

MinCut(G,K)

)︃
+ ˜︁Ω (︃

n2(H) · N

MinCut(G,K)

)︃
. (1.2)

We would like to point out that our upper bound holds for

every assignment of the functions fe to players in K while

our lower bound holds for some assignment of functions to

players in K . We first prove the upper bound (1.1), followed

by the lower bound (1.2). Finally, we argue how our bounds

are tight up to a factor of ˜︁O(d).
4.1 Upper Bound
We first consider the case when H is a star, which will be a

basic building block for our algorithms for general H .

4.1.1 H is a star. Let P = (v0,v1, . . . ,vk ) be the vertices

of the star with v0 as it’s center. In this case, H includes

k relations of the form Rv0,vi for every i ∈ [k]. Note that

computing the corresponding BCQ query q can be solved via

a set-intersection problem where we compute R′
P =

⋂︁k
i=1

R′
vi ,

where R′
vi = {a0 |(a0,ai ) ∈ Rv0,vi for some ai ∈ Dom(vi )}.

It is easy to see that the final output of q is 1 if R′
P ≠ ∅

and 0 otherwise. We can solve the resulting set intersection

problem using Theorem 3.11 to compute R′
P . The procedure

to compute R′
P is described in Algorithm 1, which when

combined with the fact that at most O
(︁
log

2
(D)

)︁
bits can be

communicated in each round, implies the following result.

Corollary 4.2. WhenH is a star, for arbitrary graphsG
and subset of players K , we have

D(BCQH,N ,G,K) = O

(︃
min

∆∈[ |V |]

(︃
N

ST(G,K,∆)
+ ∆

)︃)︃
.

For the case when G is a line with k vertices, note that

ST(G,K,∆) = 0 for every ∆ > k − 1 and ST(G,K,k − 1) = 1,

which in turn implies the following.

Corollary 4.3. Let H be a star and G be a line with k
vertices. Then

D(BCQH,N ,G,K) ≤ N + k .

Note that the above result is a generalization of the upper

bound in Example 2.2.

Algorithm 1 Algorithm for Star

1: Input: A star query with attributes P = (v0, . . . ,vk ) and rela-

tions {R(v0,vi ) : i ∈ [k]}. Note that v0 is the center.

2: Output: R′
P

3: Each player containing a relation Rv0,vi computes R′
vi =

{a0 |(a0,ai ) ∈ Rv0,vi∃ai ∈ Dom(vi )}, ∀i ∈ [k] internally.

4: R′
P =

⋂︁k
i=1

R′
vi is computed using Theorem 3.11.

5: return R′
P

4.1.2 H is a forest. We now use the above algorithm to

obtain upper bounds for the case when H is a forest.

Lemma 4.4. For arbitrary G, subset of players K and H

being a forest, we have

D(BCQH,N ,G,K) = O

(︃
y(H) · min

∆∈[ |V |]

(︃
N

ST(G,K,∆)
+ ∆

)︃)︃
.

(2)

Proof Sketch. We keep removing stars from trees in H

in a bottom-up fashion and solve the induced query on each

removed star using Algorithm 1. Since the number of stars

we remove in this process is y(H), the stated bound follows.

The details are in the full paper [38]. □

4.1.3 The general case: d-degenerate graphs. We now state

our upper bound when H is a d-degenerate simple graph:

Lemma 4.5. For arbitrary G, subset of players K , and any
d-degenerate simple graph H , we have

D(BCQH,N ,G,K) =

O

(︃
y(H) · min

∆∈[ |V |]

(︃
N

ST(G,K,∆)
+ ∆

)︃)︃
+O (τMCF(G,K,n2(H) · d · N )) . (2.1)

Proof Sketch. We decomposeH into two components

using Definition 2.7 – forest (F(H)) and core (C(H)). We

then use Lemma 4.4 to solve the induced query on F(H).

For the core, we use the trivial protocol of sending all the

remaining relations to one player. The details are in the full

paper [38]. □

4.2 Lower Bound
We start with an overview, followed by lower bounds for the

case whenH is a forest and conclude with lower bounds for

all simple graphsH .



4.2.1 Overview. As we showed in Section 2.2.2, we start by

considering an arbitrary TRIBES instance of sizem where

m is a function ofH . We then show that it can be reduced

to a suitable two-party BCQ instance, which is function-

ally equivalent to the TRIBES instance we started with. In

particular, solving the BCQ instance we constructed indeed

solves the TRIBES instance we started with. We denote this

reduction succinctly by TRIBESm,N ≤ BCQH,N . Finally, we

generalize our results from the two-party setting to general

G using ideas from [18, 19]. We crucially exploit the fact that

our lower bounds are for worst-case assignment of input

functions to players in G and show a very specific class of

assignments that achieves the required lower bound.

4.2.2 H is a forest. We prove the following lemma.

Lemma 4.6. When H is a forest, we have

TRIBES y(H)

2
,N ≤ BCQH,N .

Proof. For notational simplicity, define y = y(H). Given

H and a TRIBES y
2
,N instance we design a corresponding

BCQH,N instance. As H is bipartite, let (L,R) be the node
partition of H and consider the set OL (OR resp.) consisting

of all nodes of degree at least two included in L (R resp.). Let

O equal the largest of OL and OR (i.e.,O consists of nodes of

odd or even distance from the roots of the forest). Note that

|O | ≥
y
2
,
17
and assume w.l.o.g. that the size of O is exactly

y
2

(otherwise we take a subset ofO). We associate a pair of sets

(So,To) from TRIBES y
2
,N with each node o ∈ O , such that

TRIBES y
2
,N (Ŝ, T̂ ) =

⋀︂
o∈O

DISJN (So,To), (3)

where DISJN (So,To) = 1 if So ∩To ≠ ∅ and 0 otherwise.

We now construct a corresponding BCQH,N instance in

detail. We start by defining a pair of relations corresponding

to each pair (So,To). Let o ∈ O . If o has a parent in H , let op
be its parent. Let oc be a child of o. We consider the relations

RSo = So × {1} and RTo = To × {1}, where the attribute set of

RSo is (o,oc ) and that of RTo is (o,op ). Here we treat So and

To as subsets of [N ] (instead of elements in {0, 1}N ). In the

case that o does not have a parent node, it is a root inH with

at least two children, and thus we can set op to be a child

of o that differs from oc . Thus, TRIBES y
2
,N (Ŝ, T̂ ) = 1 iff for

each o ∈ O , the join RSo ▷◁ RTo is not empty. To complete the

description of the BCQ instance, for each o ∈ O , we associate

all additional edges (o,v) adjacent to o inH with the relation

[N ]× {1} on attributes (o,v); and remaining edges (u,v) that
are not adjacent to any o ∈ O with the relation {1} × {1}.

Note that no two vertices o1,o2 ∈ O are adjacent in H . Let

us denote the BCQ instance constructed above by qH,Ŝ ,T̂ .
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Note that in the arity two case, it is easy to construct a GYO-GHD with y

internal nodes using the structure of H. Details in the full paper [38].

To complete the proof, we show that qH,Ŝ ,T̂ = 1 iff

TRIBES y
2
,N (Ŝ, T̂ ) = 1. If qH,Ŝ ,T̂ = 1 then there exists a tuple

t ∈
∏︁

v ∈V (H) Dom(v) that satisfies all relations in qH,Ŝ ,T̂ , i.e.

te ∈ Re for every e ∈ E. Specifically, for each o ∈ O , RSo ▷◁

RTo is not empty which implies that TRIBES y
2
,N (Ŝ, T̂ ) = 1.

Alternatively, if TRIBES y
2
,N (Ŝ, T̂ ) = 1, we can find a tuple

t ∈
∏︁

v ∈V (H) Dom(v) that satisfies all relations in qH,Ŝ ,T̂ . For

each o ∈ O we set πo(t) to be any element in the intersection

of So and To , and for all remaining nodes v we set πv (t) = 1.

It holds that the relations corresponding to edges of the

form (o,op ), (o,oc ), (o,v), and (u,v) described above are all

satisfied. This concludes our proof. □

Note that the above argument was independent of G. We

now use the structure of G to obtain a lower bound on

R(BCQH,N ,G,K) using known results for TRIBES y
2
,N .

Lower bounds dependent on G. We show the following

lower bound for arbitrary G, assuming worst-case assign-

ment of relations to players in K .

Lemma 4.7. For any topology G and H being a forest,

R(BCQH,N ,G,K) ≥ ˜︁Ω (︃
y(H) · N

MinCut(G,K)

)︃
.

Proof. We first consider a min-cut (A,B) of G that sep-

arates K , where A and B denote the set of vertices in each

partition (A∪B = V ). Using the notation given in the proof of

Lemma 4.6, let qH,Ŝ ,T̂ be the query corresponding to a given

instance TRIBES y
2
,N (Ŝ, T̂ ). We assign relations {RSo }o∈O to

vertices in A and relations

{RTo }o∈O to vertices in B. The other relations in qH,Ŝ ,T̂
can be assigned arbitrarily. Note that any protocol to com-

pute qH,Ŝ ,T̂ on G gives a two-party protocol (Alice, Bob) for

TRIBES y
2
,N . In particular, Alice gets the sets {So}o∈O (corre-

sponding to RSo ) assigned to vertices in A and Bob gets the

sets {To}o∈O (corresponding to RTo ) assigned to vertices in B
(ignoring the additional relations). It follows that if there ex-

ists a R(BCQH,N ,G,K) round protocol on G, then we have

a two-party protocol (i.e., on a graphG = ({a,b}, (a,b))) with
atmostR(BCQH,N ,G,K)·MinCut(G,K)·

⌈︁
log

2
(MinCut(G,K))

⌉︁
rounds. Indeed, we can simulate the two-party protocol onG
across the cut (A,B), where Alice is responsible forA and Bob

for B. In particular, if Alice needs to send amessage to Bob (or

vice-versa), it will be sent across edges crossing the cut. Note

that in each round, atmostMinCut(G,K)
⌈︁
log

2
(MinCut(G,K))

⌉︁
bits will be exchanged between Alice and Bob. We need⌈︁
log

2
(MinCut(G,K))

⌉︁
bits in order to know the edge onwhich

the message was sent. We can now invoke (1) to obtain a

lower bound of

R(BCQH,N ,G,K) ≥ ˜︁Ω (︃
y(H) · N

MinCut(G,K)

)︃
.



□

4.2.3 General H . We are now ready to prove our general

lower bound for all simple graphs H .

Theorem 4.8. For arbitrary G, K ⊆ V , and graph H , we
have

R(BCQH,N ,G,K) ≥ ˜︁Ω (︃
(y(H) + n2(H)) · N

MinCut(G,K)

)︃
.

Proof Sketch. We present a proof sketch here. For no-

tational convenience, define y = y(H) and n2 = n2(H).

Let m = max

(︂
y
2
, n2

2 log(n2)

)︂
. In general, as in the proof of

Lemma 4.6, givenH and a TRIBES instance TRIBESm,N (Ŝ, T̂ )
we construct a BCQ instance qH,Ŝ ,T̂ such that qH,Ŝ ,T̂ = 1 iff

TRIBESm,N (Ŝ, T̂ ) = 1. To this end we need to “embed” the

m pairs of sets (Si ,Ti ) from TRIBESm,N (Ŝ, T̂ ) as relations in
qH,Ŝ ,T̂ . Form =

y
2
, we embed the pairs (Si ,Ti ) in the forest

F(H) as done in Lemma 4.6. Form = n2

2·log(n2)
, we consider

C(H). We then show that it must be the case that C(H) ei-

ther includes

(︂
n2

2 log(n2)

)︂
vertex-disjoint cycles (or) it has an

independent set of size Ω(n2). In both cases, we show how

one can embed
n2

2 log(n2)
pairs (Si ,Ti ) of TRIBESm,N (Ŝ, T̂ ) in

C(H). We defer the proof to the full paper [38].

Assuming the above embeddings, we conclude thatqH,Ŝ ,T̂ =

1 iff TRIBESm,N (Ŝ, T̂ ) = 1, wherem =

max

(︂
y
2
, n2

2 log(n2)

)︂
. Since sum and max are within a factor 2 of

each other, we can writem ≥
y
4
+

n2

4 log(n2)
. We can now apply

ideas from the proof of Lemma 4.7 to obtain the required

lower bound ˜︁Ω (︂
(y+n2)·N

MinCut(G ,K )

)︂
. □

Note that in Theorem 4.1, the upper bound follows from

Lemma 4.5 and the lower bound from Theorem 4.8. We con-

clude this section by noting that when N ≥ |V |2, our upper

and lower bounds differ by ˜︁O(d) factor (for worst-case assign-
ments of relations to players). In particular, Theorem 3.10

implies that the first two terms in the upper and lower bounds

match up to an ˜︁O(1) factor. In the full paper [38], we show

that for worst-case assignment of relations, the second terms

in the upper and lower bounds also differ by a ˜︁O(d) factor,
as desired.

5 HYPERGRAPHS H AND GENERAL FAQ
Our results generalize fairly seamlessly to hypergraphsH .

For constant d, r , our upper and lower bounds match. How-

ever, for non-constant d , we have a gap of ˜︁O(d2 · r 2), which

is worse than our gap of ˜︁O(d) for the arity two case. Details

are deferred to the full paper [38].

We extend our results from BCQ to the general FAQ prob-

lem. We define the general FAQ problem here, which is a

generalization of FAQ-SS. We are given a multi-hypergraph

H = (V, E) where for each hyperedge e ∈ E, we also have

an input function fe :

∏︁
v ∈e Dom(v) → D. In addition, we

are given a set of free variables F ⊆ V : |F | = ℓ and18 we
would like to compute the function:

ϕ
(︁
x[ℓ]

)︁
= ⊕(ℓ+1)

xℓ+1∈Dom(xℓ+1)

. . . ⊕(n)

xn ∈Dom(xn )

⊗

S ∈E

fS (xS ), (4)

where x = (xu )u ∈V and xS is x projected down to co-ordinates
in S ⊆ V . The variables inV \ F are called bound variables.
For every bound variable i > ℓ, ⊕(i)

is a binary (aggregate) op-

erator on the domain D. Different bound variables may have

different aggregates. Finally, for each bound variable i > ℓ ei-
ther ⊕(i) = ⊗ (product aggregate) or (D, ⊕(i), ⊗) forms a com-

mutative semiring (semiring aggregate) with the same addi-

tive identity 0 and multiplicative identity 1. As with FAQ-SS,
we assume that the functions are input in the listing represen-
tation, i.e. the function fe is represented as a list of its non-

zero values: Re = {(y, fe (y))|y ∈
∏︁

v ∈e Dom(v) : fe (y) ≠ 0}.
Note that when ⊕(i) = ⊕ is the same semiring aggregate for

every ℓ < i ≤ n, we have the FAQ-SS problem.

For any D, let FAQD,H,N ,F denote the class of FAQ prob-

lems, where each function in H has at most N non-zero

entries. (Note that we are not explicitly stating the oper-

ators for the bound variables (⊕(ℓ+1), . . . , ⊕(n)) since our

upper and lower bounds hold for all such operators.) Let

R(FAQD,H,N ,F,G,K) denote the minimum worst-case num-

ber of rounds needed by a randomized protocol with error at

most
1

3
that computes any query in FAQD,H,N ,F on G with

functions assigned to nodes in K . We prove the following

results.

Theorem 5.1. For O(1)-degenerate hypergraphs H with
O(1)-arity, we have

R(FAQD,H,N ,F,G,K) = ˜︁Θ (︃
(y(H) + n2(H)) · N

MinCut(G,K)

)︃
for any D, specific choices of F , arbitrary G and K . When G
is a line (as in the first row in Table 1), MinCut(G,K) = 1.

Theorem 5.2. For general degenerate hypergraphs H with
arity at most r , we have

D
(︁
FAQD,H,N ,F,G,K

)︁
= O

(︃
y(H) · min

∆∈[ |V |]

(︃
N · r

ST(G,K,∆)
+ ∆

)︃)︃
+O (τMCF(G,K,n2(H) · d · r · N ))

and

R
(︁
FAQD,H,N ,F,G,K

)︁
≥ ˜︁Ω (︃

(d · y(H) + n2(H)) · N

d · r · MinCut(G,K)

)︃
.

18
For a fixed F, the vertices in V can be renumbered so that F = [ℓ]w.l.o.g.



The lower bound differs from the upper bound by a factor of
O(r 2d2) in the worst case.

We would like to mention here once again that our upper

bound is a deterministic protocol and the lower bound is for

randomized protocols. Details are in the full paper [38].

6 MATRIX CHAIN MULTIPLICATION
We consider the following FAQ-SS problem. The network

topology has k + 2 players P0, . . . , Pk+1 such that (Pi , Pi+1) is

an edge (i.e. G is a line) where P0 receives x ∈ FN
2
and Pi for

i ∈ [k] receives Ai ∈ F
N×N
2

. Player Pk+1 wants to compute

Ak · Ak−1 · · ·A1 · x. Alternatively, for every i ∈ [k], define
yi = Ai ·yi−1, with y0 = x. Note that we want to compute yk .
Note that this is an FAQ-SS problem since we can re-write

the above as

ϕ(zk ) =
∑︂

(zi )k−1

i=0
∈[N ]k

(︄
k∏︂
j=1

Aj (zj , zj−1)

)︄
X (z0), (5)

where the functions satisfy Aj (x,y) = Aj [x,y] and X (z) =
x[z] for every triple of indices x,y, z ∈ [N ]. 19

Wenote that this problem can be solved inO(kN ) rounds.20

Proposition 6.1. The FAQ-SS problem from (5) can be
computed in O(kN ) rounds.

We prove this proposition in the full paper [38]. We re-

mark that when k is large, a bottom-to-top fashion merge

algorithm can achieve O(N 2
logk + k) rounds. (See the full

paper [38] for details.) In the next section, we prove a tight

lower bound of Ω(kN ) for the case k ≤ N .

6.1 The Lower Bound
We will argue that the upper bound of O(kN ) rounds in

Proposition 6.1 is tight if k ≤ N . Before we do that we collect

some definitions and results related to the min-entropy of a

random variable.

6.1.1 Background. The min-entropy of a random variable X
is defined as H∞ (X ) := − log maxx ∈supp(X ) Pr[X = x]. For a
random variable X and an event E that is possibly correlated

with X , define H∞ (XE) = − log

maxx ∈supp(X ) Pr[X = x, E]. Notice that in the above defini-

tion, we do not “normalize” Pr[X = x, E] by a factor of Pr[E].

For random variables X and Y , the conditional smooth

min-entropy H ϵ
∞ (X |Y ) is defined as

H ϵ
∞ (X |Y ) = sup

E

min

y∈supp(Y )
H∞ (XE|Y = y)

= sup

E

(︃
− log max

(x ,y)∈supp(X ,Y )
Pr[E,X = x |Y = y]

)︃
19
Note that N here is the dimension of the matrices as opposed to the

number of non-zero entries used in the previous sections.

20
Note that the trivial algorithm takes Ω(kN 2) rounds.

where the quantification over E is over all events E (which

can be correlated with X and Y ) with Pr(E) ≥ 1 − ϵ . When

Y is a deterministic variable (in other words, we are not

conditioning on any randomized variable), then we simply

use H ϵ
∞ (X ):

H ϵ
∞ (X ) = sup

E

H∞ (XE) , (6)

where again the quantification over E is over all events E

with Pr(E) ≥ 1 − ϵ .
The following lemma will be useful in our analysis:

Lemma 6.2 (Lemma 4 and Lemma 7 of [44]). Let Y be a
random variable with support size at most 2

ℓ . Then we have for
any ϵ ≥ 0, ϵ ′ > 0 and random variable X , that H ϵ+ϵ ′

∞ (X |Y ) ≥
H ϵ
∞ (X ) − ℓ − log(1/ϵ ′).

Finally, we will use the following result where h(p) =
−p log

2
p − (1 − p) log

2
(1 − p):

Theorem 6.3. Let the constant γ > 0 be small enough. Let
x ∈ FN

2
, A ∈ FN×N

2
and Y be random variables such that for

every y ∈ supp(Y), x and A are independent conditioned on
Y = y. Moreover for some reals ϵ1, ϵ2 ≥ 0, we have

H ϵ1+ϵ2+2
−Ω(γN )

∞ (Ax|Y) ≥
(︂
1 −

√︁
2γ

)︂
· N ,

where α
def
= 3γ +

√
2γ + h(

√
2γ ). Then, we have

H ϵ1+ϵ2+2
−Ω(γN )

∞ (Ax|Y) ≥
(︂
1 −

√︁
2γ

)︂
· N .

The proof of Theorem 6.3 follows from known results in

pseudorandomness [21, 52] and appears in the full paper [38].

6.1.2 Showing Proposition 6.1 is tight for k ≤ N . At a high
level, we will prove by induction that for player Pi at time

about γ iN , the min-entropy of yi−1 is at least α · N (and the

situation at Pi+1 should be similar). Since by this time Pi+1

would have received at most O(γ iN ) ≤ O(γN 2) bits, this

means Ai has min-entropy at least (1 − γ )N 2
. Thus, we can

apply Theorem 6.3 to argue that at Pi+1 the min-entropy of

yi = Ai · yi−1 is large. To finish the inductive argument we

have to wait for γN more steps but by Lemma 6.2, even then

yi will still have high enough min-entropy. It is natural to

wonder if we can make the same argument using Shannon

entropy instead of min-entropy. In the full paper [38], we

show that this is not possible.

We define some useful notations before we prove the lower

bound. At any given time t , letmi (t) denote the transcript of
messages exchanged on the link between Pi−1 and Pi till time

t . For i ∈ [k + 1], define ti =
γ
4
· iN , and ˜︁mi = mi (ti ). For a

random variable m, we will usem to denote a specific value

of the random variable m. In addition, we use ˜︁m[i]
and ˜︁m[i]

to denote the tuples (˜︁m1, ˜︁m2, · · · , ˜︁mi ) and (˜︁m1, ˜︁m2, · · · , ˜︁mi )

respectively.

Let ϵ∗ = 2
−Ω(γN )

be at least thrice the maximum of 2
−γN /4

and the 2
−Ω(γN )

term in Theorem 6.3. We will argue:



Lemma 6.4. Let Ai for every i ∈ [k] and x be all uniformly
and independently distributed. Let γ > 0 be such that21

4γ +
√︁

2γ + h(
√︁

2γ ) ≤ 1, (7)

and γN /4 is an integer. Then we have the following for every
i ∈ [k + 1]:

H iϵ ∗
∞

(︂
yi−1 |˜︁m[i]

)︂
≥ N (1 − γ −

√︁
2γ ). (8)

Proof. We will prove the claim by induction. For the base

case of i = 1, Lemma 6.2 implies that (recall that ˜︁m1 =

m1(t1) = m1(γN /4) and y0 = x): H ϵ ∗
∞

(︁
y0 |˜︁m1

)︁
≥ H∞ (x) −

γN /4 − log(1/ϵ∗) ≥ N (1 − γ/4 − γ/2) ≥ N (1 − γ −
√

2γ ).
Thus, (8) holds for i = 1.

We assume (8) holds for some i ≥ 1; we prove that it

also holds with i replaced by i + 1. For any interval [ℓ, r ] we
use A[ℓ:r ] to denote the tuple (Aℓ, . . . ,Ar ). Conditioned on˜︁mi = ˜︁mi

, since all communication between P1, . . . , Pi−1 and

Pi , . . . , Pk+1 are independent, we have

(B1) (x,A[1:i−1]) is independent of A[i ,k ].

(B2) yi−1 and ˜︁m[i−1]
are determined by (x,A[1:i−1]).

(B3) mi+1(ti ) is determined by A[i :k ].

The above properties imply the following, which will be used

many times in our analysis:

(C) Conditioned on ˜︁mi = ˜︁mi
, (x,A[1:i−1], yi−1, ˜︁m[i−1]) and

(A[i ,k ],mi+1(ti )) are independent.

By (C), yi−1

|︁|︁ (︁˜︁m[i],mi+1(ti )
)︁
=

(︁˜︁m[i],mi+1(ti )
)︁
has the same

distribution as yi−1

|︁|︁˜︁m[i] = ˜︁m[i]
. By the inductive hypothesis,

we have

H iϵ ∗
∞

(︂
yi−1

|︁|︁|︁ (︁˜︁m[i],mi+1(ti )
)︁ )︂
= H iϵ ∗

∞

(︂
yi−1

|︁|︁|︁˜︁m[i]
)︂

≥ N (1 − γ −
√︁

2γ ). (9)

We show in the full paper [38] that equality can be achieved

in the above lemma. Further, Lemma 6.2 (with ϵ = 0 and

ϵ ′ = ϵ∗/3) implies that

H ϵ ∗/3

∞

(︂
Ai

|︁|︁|︁ (︁˜︁mi ,mi+1(ti )
)︁ )︂

≥ N 2 − 2i ·
γ

4

· N − log(ϵ∗/3)

≥ N 2(1 − γ ). (10)

Again by (C), Ai
|︁|︁ (︁˜︁mi ,mi+1(ti )

)︁
=

(︁˜︁mi ,mi+1(ti )
)︁
has the

same distribution as

Ai
|︁|︁ (︁˜︁m[i],mi+1(ti )

)︁
=

(︁˜︁m[i],mi+1(ti )
)︁
. Equality in (9) and (10)

imply that

H ϵ ∗/3

∞

(︂
Ai

|︁|︁|︁ (︁˜︁m[i],mi+1(ti )
)︁ )︂

≥ N 2(1 − γ ). (11)

By (9), (11), and (by (C)) the fact that Ai and yi−1 are

independent conditioned on (˜︁m[i],mi+1(ti )) =

21
There exists a value γ ≥ 0.01 (for large enough N ) that satisfies the

required conditions.

(˜︁m[i],mi+1(ti )), we have the following via Theorem 6.3:

H (i+2/3)ϵ ∗
∞

(︂
yi = Aiyi−1

|︁|︁|︁ (︁˜︁m[i],mi+1(ti )
)︁ )︂

≥ N (1 −
√︁

2γ ),

as long as 1 − γ −
√

2γ ≥ 3γ +
√

2γ + h(
√

2γ ), which follows

from (7). By applying Lemma 6.2 again (with ϵ = (i + 2/3)ϵ∗

and ϵ ′ = ϵ∗/3), we get that
22
:

H (i+1)ϵ ∗
∞

(︂
yi

|︁|︁˜︁m[i+1]
)︂

≥ H (i+2/3)ϵ ∗
∞

(︂
yi

|︁|︁|︁ (︁˜︁m[i],mi+1(ti )
)︁ )︂

− Nγ/4 − log(ϵ∗/3)

≥ N (1 −
√︁

2γ −
γ

4

−
γ

2

) ≥ N (1 − γ −
√︁

2γ ),

as desired. □

The above immediately gives us our lower bound (the

proof is deferred to the full paper [38]):

Theorem 6.5. Any protocol that solves the FAQ-SS prob-
lem from (5) with k ≤ N and large enough N , with success
probability at least 1/2, takes Ω(kN ) rounds.

We will need the following result (the proof appears in

the full paper [38]) in our proof.

Lemma 6.6. AssumeH ϵ
∞ (X |Y ) ≥ L. Then for every function

f : supp(Y ) → supp(X ), we have Pr[f (Y ) = X ] ≤ ϵ + 2
−L .

We are now ready to prove Theorem 6.5.

Proof of Theorem 6.5. Let Π be any protocol with at

most tk+1 = γ (k + 1)N /4 rounds. Lemma 6.4 implies that at

the end of the protocol, we have

H (k+1)ϵ ∗
∞

(︂
yk

|︁|︁˜︁m[k+1]
)︂
≥ N (1 − γ −

√︁
2γ ).

This implies that even if the player k + 1 is given ˜︁m[k+1]

(instead of only ˜︁mk+1 = mk+1(tk+1)), it can only output the

correct answer with probability at most

(k + 1)ϵ∗ + 2
−N (1−γ−

√
2γ ),

by Lemma 6.6 (here f (Y ) is the output at Pk+1 for Y = ˜︁m[k+1]

and X = yk ). For large enough N , the above quantity is less

than 1/2. □

7 RELATEDWORK
We now survey the most closely related work. Due to lack of

space, a detailed discussion is deferred to the full paper [38].

Parallel Database Query Computation. The MPC model

has seen a lot of research activity in the last few years [2,

9, 10, 31, 36, 37]. We compared these models with ours in

Section 1.1 and Appendix A.

22
Note that we are not conditioning on mi+1(ti+1) = mi+1(ti + γN /4)

instead of the earlier mi+1(ti ).



Widths of GHDs. The Internal NodeWidthy(H) of a GHD

focuses on minimizing the number of internal (non-leaf)

nodes in GHDs of acyclic hypergraphs. There is a related

notion for Tree Decompositions called Lean Tree Decomposi-

tions (LTDs) [11, 22, 47]. The LTDs minimize the number of

internal nodes in the following way – they try to retain only

pairs of connected internal nodes whose intersection forms

a bridge in the original graphH . The other nodes are forced

to become leaves of one of the internal nodes. While our

construction procedure of GYO-GHDs tries to convert exist-

ing internal nodes to become leaves of some internal nodes,

we do not (yet) see an exact one-to-one mapping from GYO-

GHDs to LTDs. We would like to mention here that both the

goals of GYO-GHDs and LTDs are the same i.e., to minimize

the number of internal nodes. We would like to note here

that y(H) can potentially reduce the depth of the GHD as

well. Reducing depth of GHDs (sometimes by increasing the

treewidth) has been considered before [2, 4, 12].

For GHDs, the problem of computing GHDs that minimize

certain cost functions of the HDs are studied in the frame-

work of Weighted GHDs [29, 45]. For a given hypergraph

H , one way to map our notion of width to their setting is to

consider a vertex aggregating function on every candidate

HD T forH . In particular, we can write

Λ
f ′

H (T ) =
∑︂

v ′∈V (T)

f ′
H
(v ′), (12)

where f ′
H
= 1 if v ′

is a internal node and 0 otherwise. It

follows that f ′
H
can be computed in linear time in size of T .

Given this setup, Theorem 3.4 in [29] proves that computing

Minimal GHDs over HDs for arbitrary vertex aggregation

functions is NP-Hard.

However, this does not hold in our case since there is

always a GHD with one internal node (containing all the

variables in H ). As a result, considering the minimization

over all GHDs for our case is trivial and doesn’t give use

tight results. In particular, our setup is a bit different and

we minimize over GYO-GHDs (Construction 2.8). For the

tightness of our bounds forH with constant degeneracy and

constant arity, we only need an O(1)-factor approximation

of Internal-Node-Width, which we achieve (details in the full

paper [38]).

We refer the reader to [27] for a recent survey on widths

for GHD.

Distributed Computing and Communication Complexity. As
stated earlier, our model is similar to (and different from) the

CONGEST model in distributed computing [42]. Recently,

there has been work on the samemodel as ours but instead of

minimizing the number of rounds, they focus on minimizing

the total communication of the protocols [14, 19, 20, 43, 48,

50]. Finally, [18] obtained results on minimizing the number

of rounds of protocols in our setup for some well-studied

functions in two-party communication complexity literature.

Entropy in Communication Complexity. Information com-

plexity by now is a well-established sub-field of communica-

tion complexity that uses Shannon entropy to measure the

amount of information exchanges in a two-party commu-

nication protocol. Information complexity was introduced

in the work of Chakrabarti et al. [15] and later used in a

systematic way to tackle multiple problems in [8]. To the

best of our knowledge, min-entropy has only been used very

recently in communication complexity [25, 26] though it

has found numerous applications in pseudorandomness and

cryptography for at least two decades [49]. Our work adds

to the recently growing body of work that uses min-entropy

to prove communication complexity results [17].

8 FUTUREWORK
We leave the following questions as future work: handling

node failures, finding optimal assignments of functions to

players in G, identifying the optimal topology for a given

query and finally, closing the gap between our upper and

lower bounds for d-degenerate graphs for super-constant
d . We cannot (yet) handle the condition that N has to be

larger than the size of G. We address the assumptions on

the knowledge of q andG and the assumption that the input

functions are completely assigned to players inG in the full

paper [38].
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A COMPARISONWITH RELEVANT
MODELS

A.1 Basic MPC model
We formally define the MPCmodel used in [9] and the model

adopted by [2] here, both in the language of our model

(Model 2.1). We consider the MPC with no replication, which

is known as the basic MPC model in the literature.



Model A.1 (MPC(0)). We are given a query q and its under-
lying hypergraph H = (V, E) with input functions fe having
at most N non-zero values for every e ∈ E. We consider the
network topologyG ′ with p+k nodes, defined as follows. There
are k nodes, each assigned a function fe for every e ∈ E. We
call this set K . There are no edges between any pair of nodes
in K . All nodes in K are directly connected by an edge to every
node in a clique with p nodes that are disjoint from K (also a
part ofG ′). Each vnode inK has capacity N and all the remain-
ing nodes have capacity L. The capacity of a node bounds the
number of bits it can receive in each round. Given this setup,
we would like to compute BCQ (and more generally an FAQ)
ofH on G ′.
To design a protocol for this computation, we can assume that
every node in G ′ has the knowledge of q and G ′. At the end of
the protocol, a pre-determined player in K knows the answer
to q.
Finally, given the above setup, our goal is to design protocols
that minimize the number of rounds to compute q on G. This
model does not take into account the internal computation
done by the p + k nodes and assumes the nodes co-operatively
compute the answer to q.

We now summarize the differences of this model from ours.

A.1.1 Differences from our Model.
• MPC(0) assumes a specific choice of a network topol-

ogyG ′
as opposed to general topologyG in our model.

• MPC(0) assumes a specific assignment of functions in

E to players in G ′
. Our upper bound techniques can

handle any assignment but our lower bounds are for a

specific class of assignments.Wewould like tomention

here that this is true for the models in [2, 9] as well

(i.e., upper bounds can handly any assignment whereas

lower bounds are for a specific class of assignments)

and we consider one such assignment in Model A.1.

• MPC(0) assumes node capacities whereas ours assumes

edge capacities.

• The models in [2, 9] design protocols wherein the num-

ber of rounds is either constant or a function of k . The
number of rounds in our model are a function of N .

• The models in [2, 9] generally prove results for com-

puting natural join whereas we look at BCQ (and more

generally FAQs). We note that the results of [2, 9] for

natural join apply to BCQ as well. This is true for both

upper and lower bounds in [9] and only for upper

bounds in [2].

We consider two instantations of this model – one by [9] and

the other by [2].

A.1.2 Fixing p and Determining L [9]. This model assumes

N is larger than the size of G ′
and all the functions fe are

matchings (i.e., skew-free). In other words, for each variable

v ∈ e , each of the values xv ∈ Dom(v) can occur in at

most one tuple in fe . Using Proposition 3.2 and Theorem

3.3 in [9], it can be shown that there exists an optimal one

round protocol to solve BCQ of any starH on G ′
with L =

Ω
(︂
k ·N
p

)︂
. Further, whenH is a forest, BCQ ofH onG ′

takes

Θ(log(D ′)) rounds for the same L (whereD ′
is the diameter of

H ). Wewould like tomention here that a follow upwork [10]

handled input functions with specific types of skew and

proved upper and lower bounds for the queries considered

above. Since each node in the p-clique can have different

capacities in this scenario, we do not discuss it further here.

A.1.3 Fixing L and Determining p [2]. This model assumes

the size ofG ′
is much larger than N . Assuming L = (k · N )

1

δ

for a fixed small constant δ > 1, we can use the Main Results

1 and 2 from [2] and show that there exists a protocol to solve

BCQ of any starH in: (1) O(k) rounds with p = (k · N )2−
2

δ

and (2) O(log
2
(k)) rounds with p = (k · N )6−

2

δ .

Before we instantiate our model for a comparison with

the above models, we would like to state that while our

model can handle the constraint where the size of G ′
can be

larger than N , our techniques cannot. Hence, we restrict our

comparison to themodel in Section A.1.2.We now instantiate

our model (Model 2.1) withG ′
and assume that each edge in

G ′
has capacity

L′ =
L

k
=

N

p
. (13)

Note that this is a weaker version of Model A.1 since node

capacities don’t necessarily translate to equal edge capacities

when the goal is to compute q onG ′
. We take this route as it

helps us make a fair comparison with Section A.1.2.

A.1.4 Our Results in Model A.1. We show how our upper

bound techniques apply for solving BCQ of any star H

on G ′
. We can instantiate Corollary 4.2 with capacity ˜︁Θ(1)

to get O
(︂
min∆∈[ |V (G′) |]

(︂
N

ST(G′,K ,∆) + ∆
)︂)︂

rounds. We claim

that min∆∈[ |V (G′) |]

(︂
N

ST(G′,K ,∆) + ∆
)︂
= O

(︂
N
p

)︂
. To see this, we

show such a Steiner tree packing containing p trees with

diameter 2 – each node in the p-clique inG ′
along with all its

k edges incident on K forms a Steiner tree. Since there are p
such nodes, we can obtain such a packing. Recall that when

each edge in G ′
has capacity L′ (instead of the O(log

2
(D))

capacity in Model 2.1), our upper bound gets divided by L′.

Thus, we have an upper bound ofO
(︂

N
L′ ·p

)︂
= O(1) (using (13))

i.e., a constant number of rounds.

Note that a lower bound of one round on the number of

rounds is trivial. Hence, we can obtain a tight bound of ˜︁Θ(1)
for any starH , resulting in an one round protocol matching

results in Section A.1.2.



Given the tight results for the star case, there is a natural

generalization for our protocol and bounds when H is a

forest using ideas from the proof of Lemma 4.4. We start by

noting that all stars at the same level in H can be computed

simultaneously since each node in K is directly connected

to each node in the (p)-clique. In particular, we can run the

star protocol used above on all these stars simultaneously

but we still need to be able to uniquely identify the stars

computed. It’s not too hard to see that this can be done with

O(log(y(H))) additional information for each internal node

v . This results in an upper bound of

O

(︃
D ′ · log(y(H)) · min

∆∈[ |V |]

(︃
N

ST(G ′,K,∆)
+ ∆

)︃)︃
=

O

(︃
D ′ · log(y(H)) · N

p

)︃
,

where ST(G ′,K, 2) = p and D ′
is the diameter ofH . If we di-

vide our upper bound by L′ and substitute its value from (13),

we can use ideas similar to those used in the star case to

obtain a protocol with O(D ′) rounds. However, our lower

bound techniques do not work for the assignment of func-

tions to K in Model A.1. We would like to mention that the

model in Section A.1.2 takes Θ(log(D ′)) rounds for this case

(though the upper bound only holds for the special case of

matching databases).

Finally, for general simple graphs H , we decompose H into

a forest and a core by Definition 2.7. We use the trivial pro-
tocol on the core, which is basically sending all functions to

one player in K and is independent of the induced query in

the core. We would like to mention that this is worse than

existing protocols [2, 9] forH with non-constant degeneracy

d since we do not exploit any information about the query.

Before we move to the next model, we would like to mention

here that the results of Section A.1.2 and our results match up

to a constant factor for the case whenH is a star. The upper

bounds match since the protocols in both cases split the input

functions the same way – the model in Section A.1.2 uses

hashes to achieve this and we use Steiner tree packings for

the same. The results however start diverging even whenH

is a tree of small depth.

A.2 General MPC model
We now perform our second and final comparison. We

formally define the model from [36], which is a followup

of [9, 10] and performs a worst-case analysis of the com-

munication cost for join queries. All the three models are

described in [37]. We define it in the language of our model

like we did for Model A.1.

Model A.2 (MPC(ϵ)). Let ϵ be a fixed value s.t. 0 ≤ ϵ < 1. We
are given a queryq and its underlying hypergraphH = (V, E)
with input functions fe having at most N non-zero values for

every e ∈ E. We consider the network topology G ′′, which is
a clique on p. The input of size k · N is uniformly partitioned
across the p nodes. Let K = V (G ′′). It follows that |K | = p.
All nodes in G have capacity L(ϵ). The capacity of a vertex
bounds the number of bits it can receive in each round. Given
this setup, we would like to compute BCQ (and more generally
an FAQ) ofH on G ′′.
To design a protocol for this computation, we can assume that
every node inG ′′ has the knowledge of q andG ′′. At the end of
the protocol, a pre-determined player in K knows the answer
to q.
Finally, given the above setup, our goal is to design protocols
that minimize the number of rounds to compute q onG ′′. This
model does not take into account the internal computation done
by the p nodes and assumes the nodes co-operatively compute
the answer to q.

We now summarize the differences of this model from ours.

A.2.1 Differences from our Model.

• MPC(ϵ) assumes a specific choice of a network topol-

ogy G ′′
as opposed to general topology in our model.

• MPC(ϵ) assumes a uniform distribution of the input

across the p nodes instead of one function being com-

pletely assigned to a specific node in G ′′
in our model.

• MPC(ϵ) works with node capacities like Model A.1,

whereas ours works on edge capacities.

• The model in [36] designs protocols wherein the num-

ber of rounds either constant or a function of k . The
number of rounds in our model are a function of N .

• The model in [36] proves results for computing natural

join whereas we look at BCQ (and more generally

FAQs). Note that their upper results for natural join

apply for BCQ as well (but lower bound results do not

transfer).

We consider the instantiation of this model by [36].Wewould

like to mention here that the models studied in [2, 9, 10] can

all be instantiated in this setting only for proving upper

bounds.

A.2.2 Fixing p and Determining L [36]. This model assumes

N is larger than the size of G ′
and there are no restrictions

in the input functions. Using Theorems 3.1 and 3.3 of [36], it

can be shown that there exists an optimal one round proto-

col to solve BCQ of any starH on G ′′
with L

(︁
ϵ = 1 − 1

k

)︁
=

Ω
(︂

N
p1−ϵ

)︂
= Ω

(︃
N

p
1

k

)︃
. Further, when H is a forest, BCQ of H

onG ′′
takesO(k) rounds23 withL

(︂
ϵ = 1 − 1

ρ∗(H)

)︂
= Ω

(︂
N

p1−ϵ

)︂
=

23
For the case when we are interested in computing the join query of H,

then there is also a matching Ω(k ) lower bound.



Ω

(︃
N

p
1

ρ∗(H)

)︃
using ideas in Section 4 of [36]. Here, ρ∗(H) de-

notes the edge cover number ofH (i.e., size of the minimum

edge cover of H ).

We now instantiate our model (Model 2.1) with G ′′
and as-

sume that each edge in G ′′
has capacity

L′′ =
L(ϵ)

p
. (14)

Further, we assume that the input functions are not dis-

tributed uniformly but rather based on some pre-determined

hash functions. Note that this certainly makes our model

(Model A.1) more restrictive since node capacities don’t nec-

essarily translate to equal edge capacities when the goal is to

compute q on G ′′
and the hash-based split (see Appendix H

in the full paper [38]) restricts the way in which input func-

tions can be distributed across nodes in G ′′
. We opt for this

since it helps us make a fair comparison with Section A.2.2.

A.2.3 Our Results in Model A.2. We now show how our up-

per bound techniques apply in this model for solving BCQ

of any star H on G ′
. We do not compare lower bounds here

since (1) [36] lower bounds do not hold for BCQ (or at least it

does not follow immediately from their lower bounds for the

join quries) and (2) Our lower bounds for the case when the

functions are uniformly distributed over the players are quan-

titatively very weak. For the upper bound, we can instantiate

Corollary H.7 in the full paper [38] with capacity ˜︁Θ(1) to
get O

(︂
min∆∈[p]

(︂
N

ST(G′′,K ,∆) + p · ∆
)︂)︂

rounds. We claim that

min∆∈[p]

(︂
N

ST(G′′,K ,∆) + p · ∆
)︂
= O

(︂
N
p + p

)︂
. To see this, we

show a Steiner tree packing containing
p−1

2
trees with di-

ameter 1 – we can greedily keep picking and throwing out

paths of length p − 1 from G ′′
that contain all the p vertices.

Each such path forms a Steiner tree. Since we can identify

p−1

2
such paths, we can obtain such a packing. Recall that

when each edge in G ′′
has capacity L(ϵ) instead of the stan-

dard O(log
2
(N )), our upper bound gets divided by L′′. Thus,

we have an upper bound of O

(︃
N
p +p
L′′

)︃
. Using (14) and the

fact N ≥ p2
(from Model 2.1), we get a O

(︂
p

1

k

)︂
round proto-

col. Note that this is worse than the one round protocol by

Section A.2.2.

For the case whenH is a forest, we can instantiate Corollary

H.7 in the full paper [38] with capacity ˜︁Θ(1) to get a bound

of

O

(︃
y(H) · min

∆∈[ |V |]

(︃
N · r

ST(G ′′,K,∆)
+ p · ∆

)︃)︃
=

O

(︃
D ′ · log(y(H)) · N

p

)︃
,

where ST(G ′′,K, 1) = p and D ′
is the diameter of H . We

can use ideas from Section A.1.4 and from those used in the

star case to obtain a protocol with O
(︂
D ′ · p

1

ρ∗(H)

)︂
rounds. In

particular, to get this bound, we divide our upper bound by

L′′ and substitute its value form (14). Note that this is worse

than the O(k) round protocol by Section A.2.2.

Finally, for general simple graphsH , we decomposeH into a

forest and a core by Definition 2.7. We use the trivial protocol
on the core, which is basically sending all functions to one

player in K and is independent of the induced query in the

core. As stated in Section A.1.4, this is worse than existing

protocols [36] forH with non-constant degeneracy d since

we do not exploit any information about the query.

A.3 Scope for Future Work
Many open questions arise out of this comparison. We sum-

marize them here and leave them for future work.

• Can we modify our model to handle node failures like

Models A.1 and A.2 do, using replication?

• Can we improve over our trivial protocol for cyclic
queries using ideas from [2, 9, 10, 31, 36, 37]?

• Can our algorithmic ideas for set intersection be plugged

into the Models A.1 and A.2?

• Can we extend our techniques to handle arbitrary dis-

tributions of input functions to nodes in the topology?
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